Thermal and electrical characteristics of a twoâ•’dimensional tanhâ•’conductivity arc

نویسندگان

  • Portonovo S. Ayyaswamy
  • G. C. Das
  • Ira M. Cohen
چکیده

The two-dimensional variable-property arc has been studied through the use of the tanh-conductivity model. Results that describe the thermal and electric arc characteristics for various values of the electrode temperatures and aspect ratios are given. The numerical evaluation is carried out by the use of a Galerkin technique. The results exhibit several novel and interesting features depending on the arc parameters. For large aspect ratios (ratio of the interelectrode distance to that between the bounding walls) and small electrode temperatures, the current---electric-field characteristics tend toward those of a slender arc. However, at a given aspect ratio with large enough electrode temperatures, the distinct minimum noted in the slender-arc characteristics does not occur. Also, for a given aspect ratio and large enough differences in electrode potential, the electric-field-current characteristic is nearly linear and is independent of the electrode temperature. The transverse electrostatic potential is found to have no significant variation in cross-sectional planes. The qualitative nature of the thermal characteristics are similar to those of a constant-property arc although significant differences in quantitative results exist. Wall and electrode heat transfer rates are provided. Disciplines Engineering | Mechanical Engineering Comments Suggested Citation: Ayyaswarmy, Portonovas S., G.C. Das and Ira M. Cohen (1978) Thermal and electrical characteristics of a twodimensional tanh-conductivity arc. Journal of Applied Physics. Vol. 49(1). Copyright (1978) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Journal of Applied Physics and may be found at http://link.aip.org/link/ JAPIAU/v49/i1/p160/s1 This journal article is available at ScholarlyCommons: http://repository.upenn.edu/meam_papers/189 Thermal and electrical characteristics of a two-dimensional tanh-conductivity arc P. S. Ayyaswamy, G.C. Das, and I. M. Cohen Department of Mechanical Engineering and Applied Mechanics. University of Pennsylvania, Philadelphia, Pennsylvania 19104 (Received 6 January 1977; accepted for publication 5 April 1977) The two-dimensional variable-property arc has been studied through the use of the tanh-conductivity model. Results that describe the thermal and electric arc characteristics for various values of the electrode temperatures and aspect ratios are given. The numerical evaluation is carried out by the use of a Galerkin technique. The results exhibit several novel and interesting features depending on the arc parameters. For large aspect ratios (ratio of the interelectrode distance to that between the bounding walls) and small electrode temperatures, the current---electric-field characteristics tend toward those of a slender arc. However, at a given aspect ratio with large enough electrode temperatures, the distinct minimum noted in the slender-arc characteristics does not occur. Also, for a given aspect ratio and large enough differences in electrode potential, the electric-field-current characteristic is nearly linear and is independent of the electrode temperature. The transverse electrostatic potential is found to have no significant variation in cross-sectional planes. The qualitative nature of the thermal characteristics are similar to those of a constant-property arc although significant differences in quantitative results exist. Wall and electrode heat transfer rates are provided. PACS numbers: S2.80.Mg

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Investigation on Stability, Electrical and Thermal Characteristics of Transformer Insulting Oil Nanofluids

Transformer insulating oil nanofluid is made to improve dielectric and thermal properties of the oil by employing nanoparticles with proper properties. In the current work, nanofluids based on transformer mineral oil were prepared by three procedures using diamond nanoparticles with high thermal conductivity, as well as high dielectric properties. It was tried to consider the impacts of surfact...

متن کامل

Inhomogeneous Effects of Temperature Change on the Velocity of Railgun in Three Dimensional Condition

In the Railgun which is used to accelerate objects, electrical energy is used to drive the system. In order to reach hypervelocities, a power supply with immense amount of energy must be used which causes an extra ordinary current on the rail and the armature. This current makes thermal energy by the ohmic attenuation and warms up various points and therefore changes the electrical, thermal and...

متن کامل

Thermal and electrical conductivity of Aluminium Nitride nanofluids

This study was designed to experimentally measure the thermal and electrical conductivities of Aluminium Nitride/Ethylene Glycol (AlN/EG) nanofluids. Transmission electron microscopy (TEM) was used to characterize the shape of AlN nanoparticles. Nanofluids with different particle volume concentrations of 0.5%, 1%, 2%, 3%, 4%, and 5% were utilized. The thermal and electrical conductivities of the...

متن کامل

Optimal design of manufacturable three-dimensional composites with multifunctional characteristics

We present an optimization method to design three-dimensional composite microstructures with multifunctional characteristics. To illustrate the fascinating types of microstructures that can arise in multifunctional optimization, we apply our methodology to the study the simultaneous transport of heat and electricity in three-dimensional, two-phase composites. We assume that phase 1 has a high t...

متن کامل

Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation.

We developed a hydrogen arc discharge exfoliation method for the synthesis of graphene sheets (GSs) with excellent electrical conductivity and good thermal stability from graphite oxide (GO), in combination with solution-phase dispersion and centrifugation techniques. It was found that efficient exfoliation and considerable deoxygenation of GO, and defect elimination and healing of exfoliated g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015